BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts

Emanuele Marconato^{1,2,®}, Samuele Bortolotti^{1,®}, Emile van Krieken^{3,®}, Antonio Vergari³, Andrea Passerini¹, Stefano Teso¹ ¹ University of Trento, ² University of Pisa, ³ University of Edinburgh, [®] Equal contribution

NEURO-SYMBOLIC MODELS

NeSy predictors like DeepProbLog [1] and LTN [2] combine perception and reasoning.

x: input, y: labels
c: concepts (discrete)
NN: encoder w/ params θ
K: prior knowledge

Trained to achieve maximum log-likelihood (MLL):

$$\operatorname*{argmax}_{ heta} \sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}} \log p_{ heta}(\mathbf{y} \mid \mathbf{x}; \mathsf{K})$$

Manhaeve et al., DeepProbLog: Neural Probabilistic Logic Programming, NeurIPS (2018)
 Donadello et al., Logic Tensor Networks for Semantic Image Interpretation, IJCAI (2017)

REASONING SHORTCUTS (RSs)

NeSy models can achieve high accuracy by learning unintended concepts! [3]

 \equiv Non-identifiability of latent concepts

OPEN PROBLEMS

- RSs compromise OOD generalization
- Effective mitigation, like concept supervision [3], is often impractical.

Over-confidence in predicted concepts: impossible to spot the wrong ones!

[3] Marconato et al., Not All Neuro-Symbolic Concepts are created Equal: Analysis and Mitigation of Reasoning Shortcuts, NeurIPS (2023)

🐻 BEARS: BE AWARE OF REASONING SHORTCUTS! 🐻

combines **Deep Ensembles** [4] + **diversification** and optimizes for all desiderata:

$$\mathcal{L} = \mathcal{L}(\mathbf{x}, \mathbf{y}; \mathsf{K}, \theta_{t+1}) + \gamma_1 \cdot \mathsf{KL}(p_{\theta_{t+1}}(\mathbf{C} \mid \mathbf{x}) \mid\mid \frac{1}{t} \sum_{j=1}^{t} p_{\theta_j}(\mathbf{C} \mid \mathbf{x})) + \gamma_2 \cdot H(p_{\theta_{t+1}}(\mathbf{C} \mid \mathbf{x}))$$

THEORY

Under two assumptions (in **red** below) we show:

- 1. All (stochastic) RSs live in a simplex
- 2. Average different RSs = entropy maximization
- 3. Ensembles + KL = average different RSs

Data Generation Process

EXPERIMENTS

